

ESTIMATING THE RISK FACTOR ATTRIBUTABLE BURDEN IN EUROPE – A SYSTEMATIC LITERATURE REVIEW

Presenter: Vanessa Gorasso PhD fellow at Sciensano, Belgium Vanessa.gorasso@sciensano.be

COST is supported by the EU framework programme Horizon 2020

Background

The Global Burden of Disease study provides a comprehensive summary of the health burden attributable to risk factors

- Main method use is the comparative risk assessment
- In addition, many national and subnational studies are being carried in the same framework
- Many methodological choices need to be made

The systematic literature review helps to identify and summarize methodological differences in European studies

Aims and objectives

- Identify available attributable BoD studies in Europe
- synthesize the current scope and quality of comparative risk assessments:
 - which are the most regarded risk factors?
 - what methods are used?
 - are there relevant differences?

Methods

- The same search strategy as the other searches + comparative risk assessment, or health impact assessment terms
- Databases:

Indexed, peer-reviewed literature

- PubMed
- Web of Science (login required)
- Embase (login required)

Indexed, grey literature

- OpenGrey (http://www.opengrey.eu/)
- OAlster (http://oaister.worldcat.org/)
- CABDirect (http://www.cabdirect.org/)
- WHO (https://www.who.int/)

+

Websites of public health agencies;

Literature from group members of the COST action

Results – PRISMA flow

Results – basic information

* EU-28, EU-15, EU-10, WHO European region ** Denmark, Finland, Norway, Sweden (+Greenland)

Results – risk factors

- Behavioural risk factors are the most investigated – with the majority of publications being tobacco (including second-hand smoke) and alcohol use
 - Dietary risk, physical activity and alcohol use are more likely to be part of studies computing own BoD estimates
- Noise was investigated only within studies that developed own DALYs computations

Results – risk factors

Use of relative risk functions

The great majority of the studies used relative risks to defined the link between exposure and outcome (88%). Other measures were hazard ratios, odds ratios, computation of slope factor (dose-response curve)

Pollutant	Pollutant Health Endpoint		Ages	RR per 10 μg/m ³ (95% CI)		
PM _{2.5}	Natural mortality		>30 year	1.062	(1.040–1.083)	
	CVDs (hospital admiss	sions)	all	1.0091	(1.0017–1.0166)	
	Respiratory (hospital adm	nissions)	all	1.0190	(0.9982–1.0402)	
PM ₁₀	Infant mortality		1–12 montł	n 1.04	(1.02–1.07)	
	Chronic bronchitis (chil	ldren)	6–12 year	1.08	8 (0.98–1.19)	
	Chronic bronchitis (ad	ults)	>18 year	1.117	(1.040 - 1.189)	
	Astrima symptoms (cni	laren)	5–19 year	1.028	(1.006-1.051)	
NO ₂	Natural mortality	D	all	1.0027	(1.0016–1.0038)	
	Natural mortality (>20 μ g/m ³) ^c		>30 year	1.055 (1.031–1.080)		
Bronchitis sympto Respiratory (bospital av		ms all		1.021 (0.990–1.060) 1.0180 (1.0115–1.0245)		
	Respiratory (nospital add	mssiony	ali	1.0100	(1.0113-1.0243)	
Health endpoint		Risk point estimate		95% CI		Reference
LBW		OR = 1.38		(1.13-1.69)	Windham et al. (1999) [38]
SIDS, children < 1 year		OR = 1.94		(1.55-2.43)	Anderson & Coo	ok (1997) [36]
LRI, children < 2 years		OR = 1.5	1.55 (1.42–1.69)		the United States Surgeon General (2006) [39]	
OM, children < 3 years		IDR = 1.3	38	B (1.21–1.56) Etzel et al. 199		[40]; Cal-EPA (2005) [41]
Asthma (onset), children < 15 years		OR = 1.3	32	(1.24-1.41) Cal-EPA (2005) [41]		[41]
Asthma (prevalence), children < 15 years		OR = 1.2	23	(1.14-1.33)	the United States Surgeon General (2006) [39]	

Example of dose-response curve (Jakobsen et al 2016)

Results – risk factors

Use of population attributable fractions

For the majority of the studies (89%), the attributable burden was computed by means of the PAF formula. \rightarrow The name used for the function can vary – e.g. population average exposure, population-weighted average concentration (for air pollution studies)

$$PAF = \frac{\int_{x=0}^{m} RR(x)P(x)dx - \int_{x=0}^{m} RR(x)P'(x)dx}{\int_{x=0}^{m} RR(x)P(x)dx} PAF = \frac{f \times (RR_E - 1)}{f \times (RR_E - 1) + 1} PAF = \frac{f \times (RR_E - 1)}{PAF_{sHs}} PAF_{sHs} = [p(OR - 1)]/[p(OR - 1) + 1]$$

$$PAF = \frac{\int_{x=0}^{3} P_j(RR_j - 1)}{1 + \sum_{j=0}^{3} P_j(RR_j - 1)}$$

Other methods include: Markov modelling, multivariate regression to estimate the association of the risk factors and DALYs (May et al 2015)

• No computation of attributable burden – e.g. burden of psychostimulant dependence

Conclusions

When it comes to computation of attributable burden:

- Relative risk ratios and population attributable factor are widely use within health risk assessments
 - Nevertheless, there is a variety of terms used to describe the same concept
- Burden of risk factors doesn't always go through comparative risk assessment

Thank you for your attention

Special thanks

To more than 100 COST Action CA18218 collaborators Please get in touch: info@burden-eu.net

COST is supported by the EU framework programme Horizon 2020