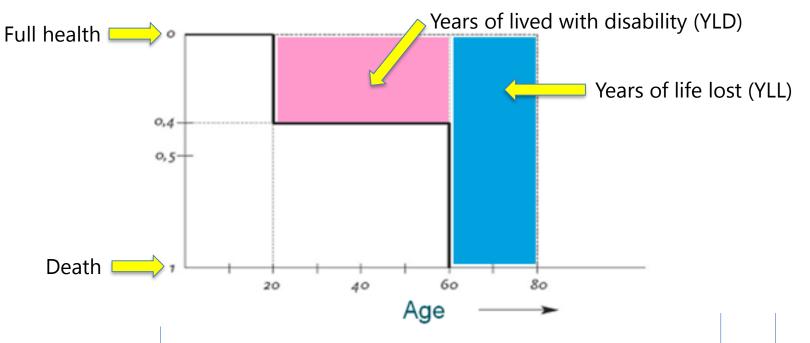


Elicitation of disability weights

Juanita Haagsma, Erasmus MC, Rotterdam, The Netherlands


Burden EU webinar 7 January 2021

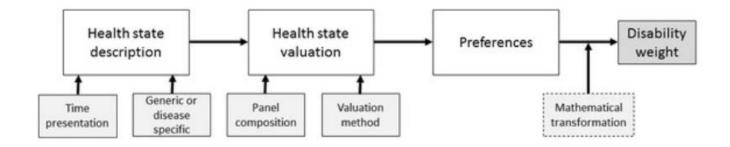
Disability adjusted life year (DALY)

- The DALY is a health gap measure
- It uses healthy time as a unit to measure the health gap

Disability weights

- A weight is needed to measure health losses from non-fatal outcomes
- Disability weights quantify severity of outcomes as percentage reduction from perfect health
 - e.g., if weight for severe traumatic brain injury was 0.50,
 - then 2 people living with severe traumatic brain injury in year of interest would be equivalent to the loss of one year due to premature mortality

Weighing health and disability


- The disability weight is essential for calculating DALYs
- It is a value assigned to living with disability
- It has a value that is anchored between 0 (perfect health) and 1 (equivalent to death)
- This value reflects the relative severity of a health state

How? Design choices

Conceptual model of assessing disability weights and its design choices.

Health state description

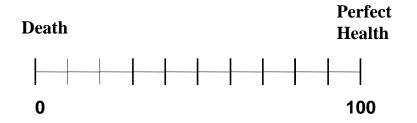
HIP FRACTURE

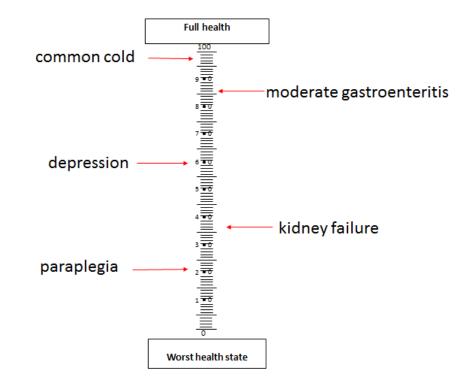
This person experiences pain and stiffness in and around the hip area.

	Many problems in walking about Many problems with self-care (washing self, dressing self, eating)
•••	Many problems with usual activities (work, study, housework, family or leisure activities)
••	Moderate pain or discomfort
0	Not anxious or depressed
0	No problems in cognitive functioning (memory, learning ability, concentration, comprehension)

- Based on health state valuations of a panel of judges
 - Patients
 - Health experts
 - Population

Important consideration for the description of the health state.


- Visual analogue scale
- Time trade-off
- Person trade-off
- Paired comparison


Visual Analogue Scale

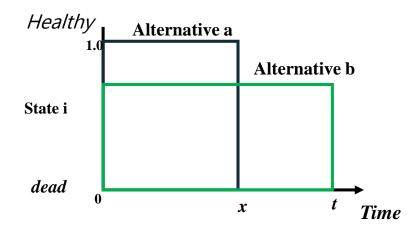
Respondents position each health state on a scale from 0 (least desirable or death) to 100 (most desirable or perfect health)

Visual Analogue Scale

Advantages

- familiar to most people from a variety of everyday experiences
- cognitive burden is relative low

Disadvantages


- avoidance of extreme categories, clustering of values
- no choice-based trade-off feature. Therefore, in a technical sense, the VAS does not assess preferences but values

Time Trade-Off

Respondents determine what amount of time they would be willing to give up to be in a better versus a poorer health state

Time Trade-Off

Advantage

• choice-based: choice between two certain outcomes

Disadvantage

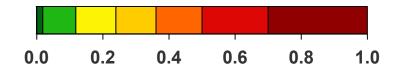
- seems to confound preferences for health states with time preference
- respondents are likely to include other (social) considerations than only health

Asks how many outcomes of one kind are equivalent in social value to X outcomes of another kind (here deafness)

Advantage

closely related to resource allocation question

Disadvantages


- respondents are reluctant to make such choice
- cognitive burden is relatively high

First ever disability weights study

- For GBD 1990 study, expert panel (n=10) used 'person trade-off' to assign values to 22 indicator conditions.
- The remaining 461 conditions were allocated across 7 disability classes.

GBD 2010 disability weight study

- After GBD 2010 publication other disability weight studies followed
- ~disability weight measurement studies performed
- Differences in design choices, which affect the values of disability weights

Year	Study	Ref no.	Region	Multiple or single cause?	Panel composition	N panel	N health states	Health state description	Valuation methods (% of total number of health states valued by each of the methods)
1996	Murray et al.	[25]	Global	М	ME	10	483	DS	<1% PTO, 99% VAS
1997	Stouthard et al.	[19]	Netherlands	М	ME	38	175	DS + EQ-5D	10% PTO, 90% VAS
2008	Haagsma et al.	[20]	Netherlands	S (injury)	PP	143	44	DS + EQ-5D	100% VAS, 100% TTO

Table 1 Included studies: Panel of judges, health state description, and time presentation

- Over **30,000** respondents (!!!!)
- Multiple countries
- Completely different design