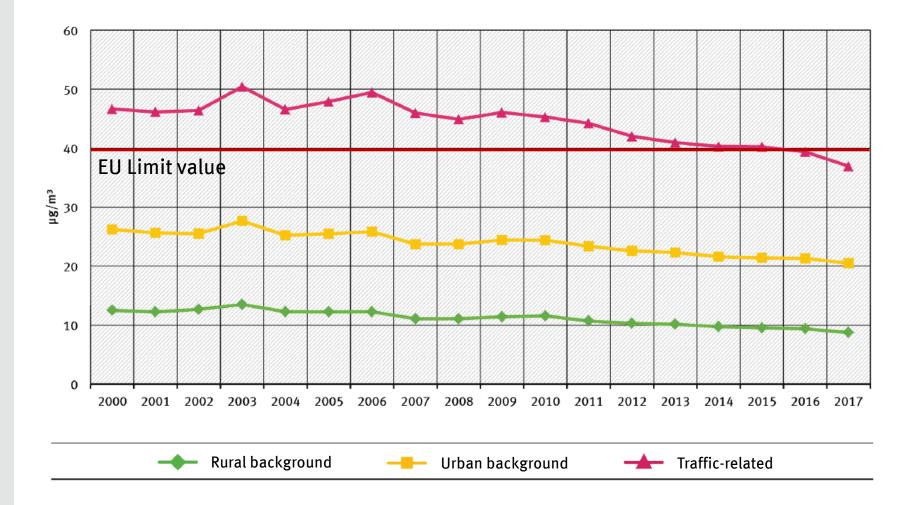
For our Environment

Workshop: Environmental burden of disease: methods and applications

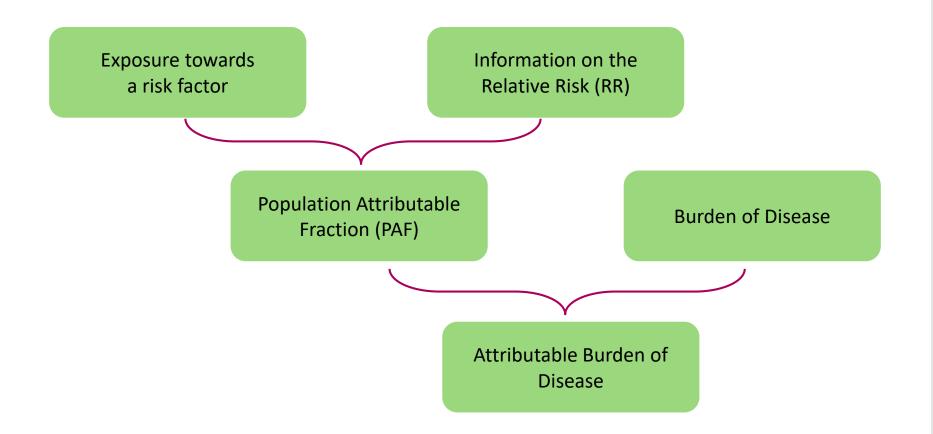
Burden of disease due to nitrogen dioxide exposure in Germany

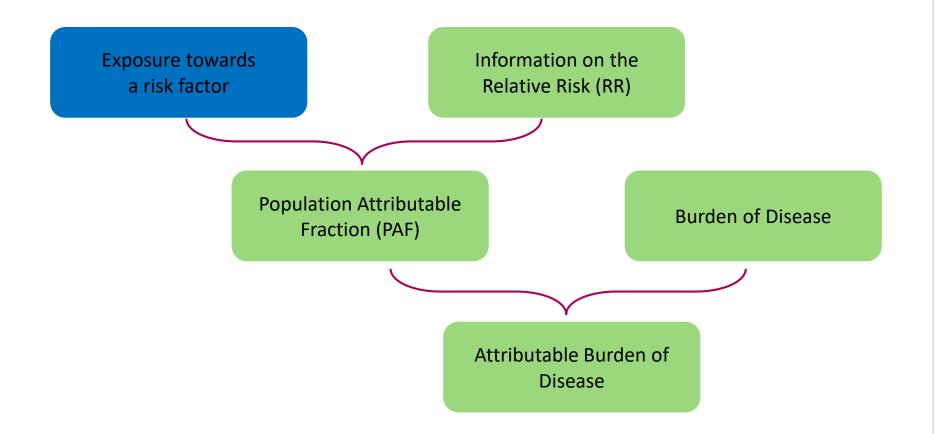

A case study

Dietrich Plass, Myriam Tobollik, Dirk Wintermeyer German Environment Agency Section: Exposure Assessment and Environmental Health Indicators

Background

- Air pollution is an important risk factor for population health
- According to GBD 2017 around 2.9 Million deaths in 2017 attributable to ambient particulate matter pollution (PM_{2.5})
- Using the summary measure DALY, particulate matter globally ranks 10th among the 84 considered risk factors in GBD
- In Germany particulate matter is the most relevant environmental risk factor
- Current estimates of the GBD-Study do not consider nitrogen dioxide (NO₂) as a risk factor
- Studies indicate numerous adverse health effects of NO₂


Air quality in Germany – NO₂-measurements



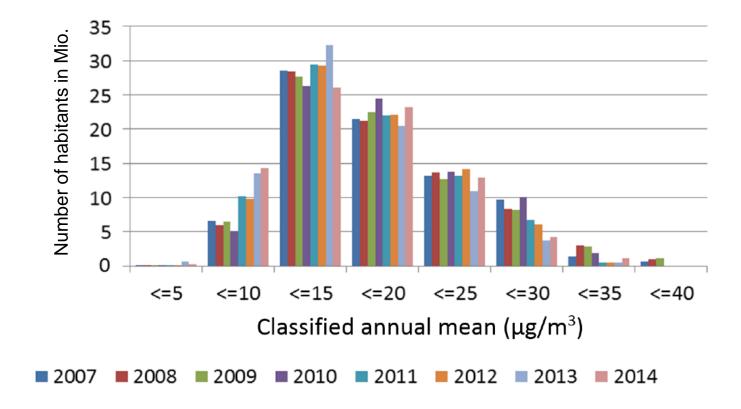
(https://www.umweltbundesamt.de/publikationen/luftqualitaet-2017)

Project motivation and study objectives

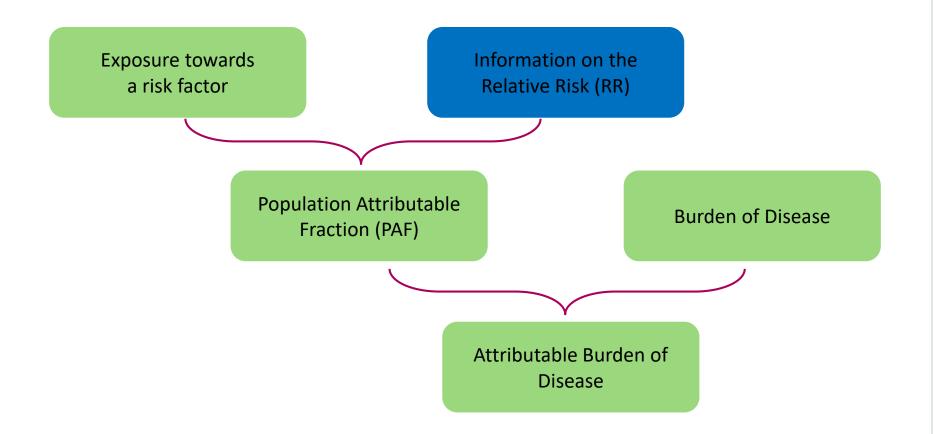
- Regular exceedances of NO₂ limit values in urban areas with intense traffic
 - e. g. in 2018 \rightarrow 39% of traffic sites above 40 μ g/m³
- <u>Objective</u>: to assess the disease burden attributable to the NO₂ exposure of the German population
- Based on current evidence on exposure-response functions
- Application of the Environmental Burden of Disease (EBD) concept as introduced by the WHO
- Project conducted by the German Research Center for Environmental Health

Exposure assessment for the years 2007 to 2014 (I)

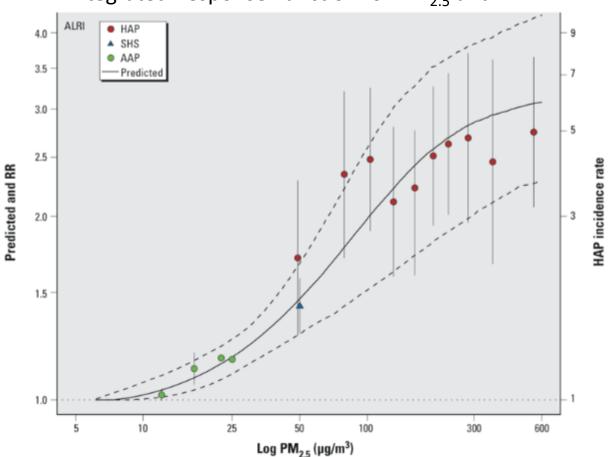
 Maps of the annual spatial 1 km by 1 km distribution of population weighted NO₂ background concentrations


Based on:

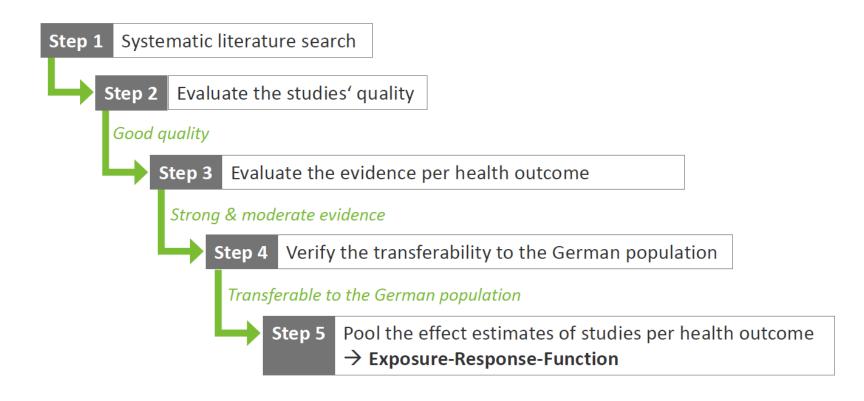
- → Assimilated modelling data of background NO_2 concentrations on a 7 km by 8 km spatial grid
- → Population density on a 250 m by 250 m spatial grid


Result:

Population distributions for different concentration classes


Exposure assessment for the years 2007 to 2014 (II)

Cave: Measuring sites close to traffic hot spots not considered due to methodological restrictions


Exposure Response Function in general

Integrated Response Function for $PM_{2.5}$ and ALRI

(Burnett et al. 2014)

Exposure-Response-Function for NO₂(I) – literature review

Exposure Response Function for NO₂ (II) – health outcomes

Strong Evidence:

• Cardiovascular mortality

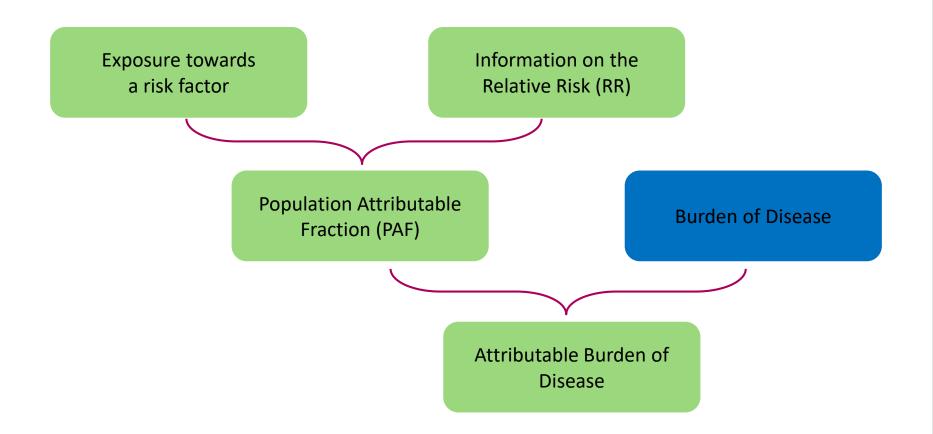
Moderate Evidence:

- Asthma
- COPD
- Hypertension
- Ischemic heart disease
- Heart failure
- Stroke
- Diabetes

Weak Evidence or missing health data:

- Mortality (total, respiratory)
- Hospital admissions
- Myocardial infarction
- Lung cancer
- Chronic bronchitis
- Lung function / Lung growth
- Premature birth (< 37th week)
- Low birth weight (< 2,500 g)

Cardiovascular mortality:


- Estimates of 6 studies were pooled to a Hazard Ratio of 1.03 (95% Cl: 1.01 – 1.05)
- Sources: Turner et al. (2016), Beelen et al. (2014b), Carey et al. (2013), Cesaroni et al. (2013), Jerrett et al. (2011) and Brunekreef et al. (2009)

Exposure Response Function for NO₂ (III) – counterfactual value

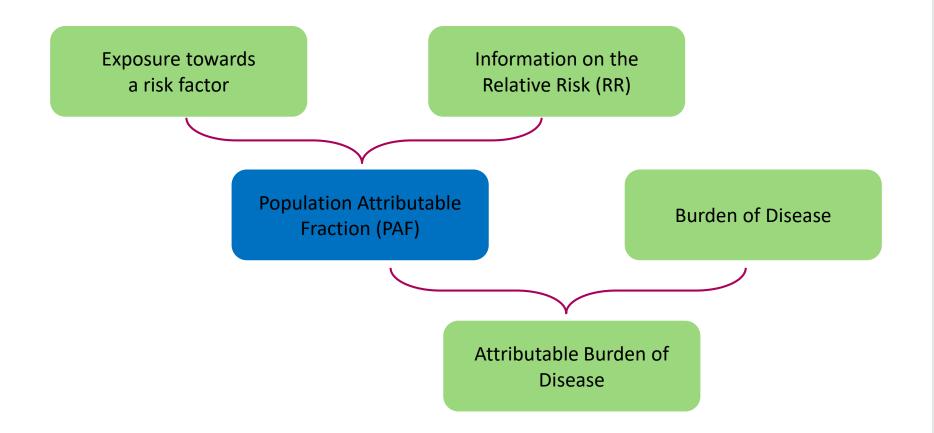
- Current studies do not show a safe level for NO₂-exposure
- Main Analysis:
- 10 µg/m³ annual mean
- Epi-studies show considerable uncertainties below 10 μg/m³
- In rural areas of Germany, i. e. away from the typical NO₂ sources, the annual average concentrations for the years 2007 to 2014 were about 10 μ g/m³

Scenario analyses:

- 0 μg/m³ NO₂
- 5 μg/m³ NO₂
- 20 μg/m³ NO₂

(based on Prüss-Ustün et al. 2003)

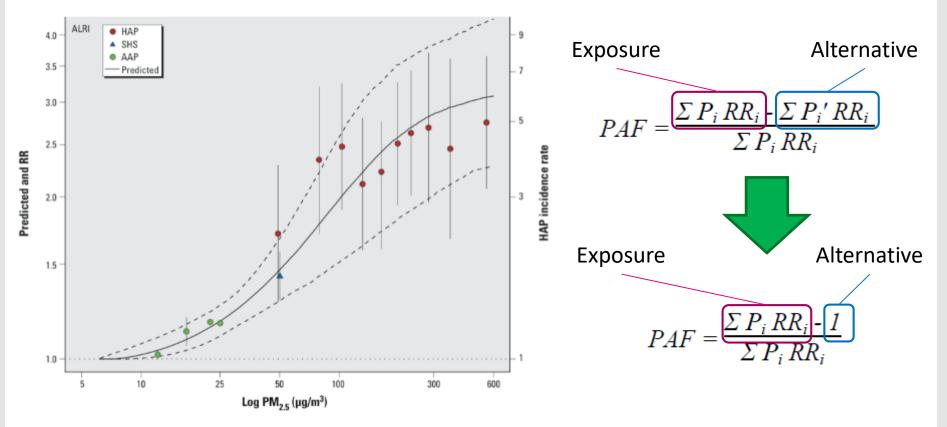
Health data

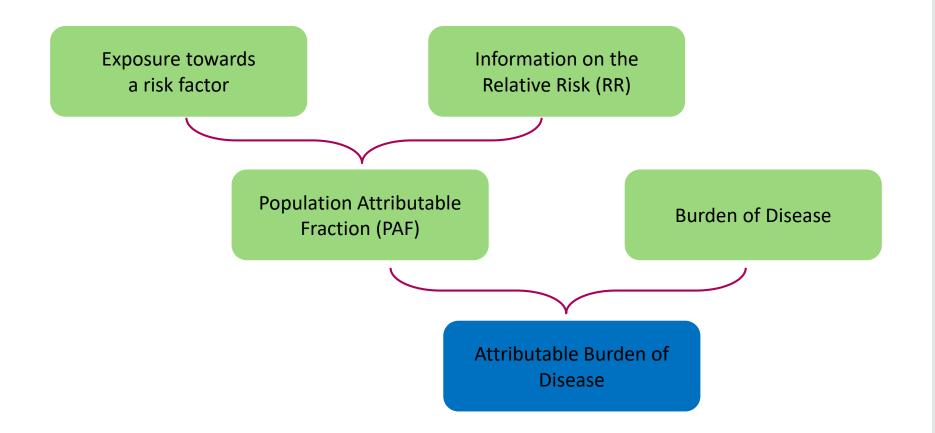

Mortality

- Deaths statistics from German Vital Registration System
 - By age group, sex, and cause
- \rightarrow deaths and YLL

<u>Morbidity</u>

- Representative population based surveys
 - GEDA a German health examination survey
 - 12-month prevalence
 - Extrapolation of data for missing years


\rightarrow YLD


(based on Prüss-Ustün et al. 2003)

Population Attributable Fraction (PAF)

Integrated Response Function for ALRI

(Burnett et al. 2014, Prüss-Ustün et al. 2016)

(based on Prüss-Ustün et al. 2003)

Results – cardiovascular mortality attributable to NO₂ in 2014

Parameter	Value (95% Confidence Interval)
Attributable fraction in %	1.8 (0.6 – 2.9)
Attributable number of deaths	5,966 (2,031 – 9,893)
Years of Life Lost due to premature mortality (YLLs)	49,726 (16,929 – 82,456)
YLLs per 100.000	87.96 (29.95 – 145.85)

Results – cardiovascular mortality attributable to NO₂ from 2007 to 2014

	2007	2008	2009	2010	2011	2012	2013	2014
Attributable proportion in % (95% CI)	2.19	2.29	2.26	2.26	1.86	1.87	1.58	1.77
	(0.75-3.62)	(0.78-3.79)	(0.77-3.74)	(0.77-3.74)	(0.63-3.08)	(0.64-3.10)	(0.54-2.63)	(0.60-2.93)
Attributable deaths (95% Cl)	7,832	8,157	8,035	7,960	6,343	6,531	5,605	5,966
	(2,669-	(2,780-	(2,735-	(2,715-	(2,161-	(2,225-	(1,907-	(2,031-
	12,973)	13,510)	13,309)	13,172)	10,514)	10,822)	9,299)	9,893)
Years of Life Lost (YLLs) (95% Cl)	69,244	71,396	69,526	68,428	53,489	54,536	46,795	49,726
	(23,601-	(24,334-	(23,696-	(23,343-	(18,218-	(18,579-	(15,924-	(16,929-
	114,690)	118,251)	115,157)	113,235)	88,653)	90,369)	77,631)	82,456)
YLLs per 100.000 inhabitants (95% CI)	122.78	126.40	123.04	120.85	94.10	95.48	83.13	87.96
	(41.85-	(43.08-	(41.94-	(41.23-	(32.05-	(32.53-	(28.29-	(29.95-
	203.36)	209.35)	203.80)	199.98)	155.97)	158.22)	137.91)	145.85)

CI, Confidence interval

Discussion

- The results show a considerable burden of disease attributable to the NO₂ exposure in Germany
- Relative impact of NO_2 (ca. 6,000) lower as compared to particulate matter (ca. 41,000 attributable deaths)
- Underestimation likely because:
 - Not considered concentrations of traffic hot spots
 - Only estimated for health outcomes with strong evidence
- Combined effects not considered in the main analysis
 - Scenario analysis indicate a decrease of NO₂-burden by about 46%
 - Combined effects in scenario only based on estimates from one study
- Considerable impact of parameter choices
 - E.g. counterfactual value

Merci beaucoup pour votre aimable attention

Dr. Dietrich Plass M.Sc. PH

dietrich.plass@uba.de

We thank the project team at HMGU and IVU Umwelt GmbH: Alexandra Schneider, Josef Cyrys, Susanne Breitner, Ute Kraus, Annette Peters, Volker Diegmann, Lina Neunhäuserer

Umwelt 🌍 Bundesamt